456 research outputs found

    Implementing a 48 h EWTD-compliant rota for junior doctors in the UK does not compromise patients’ safety : assessor-blind pilot comparison

    Get PDF
    Background: There are currently no field data about the effect of implementing European Working Time Directive (EWTD)-compliant rotas in a medical setting. Surveys of doctors’ subjective opinions on shift work have not provided reliable objective data with which to evaluate its efficacy. Aim: We therefore studied the effects on patient's safety and doctors’ work-sleep patterns of implementing an EWTD-compliant 48 h work week in a single-blind intervention study carried out over a 12-week period at the University Hospitals Coventry & Warwickshire NHS Trust. We hypothesized that medical error rates would be reduced following the new rota. Methods: Nineteen junior doctors, nine studied while working an intervention schedule of <48 h per week and 10 studied while working traditional weeks of <56 h scheduled hours in medical wards. Work hours and sleep duration were recorded daily. Rate of medical errors (per 1000 patient-days), identified using an established active surveillance methodology, were compared for the Intervention and Traditional wards. Two senior physicians blinded to rota independently rated all suspected errors. Results: Average scheduled work hours were significantly lower on the intervention schedule [43.2 (SD 7.7) (range 26.0–60.0) vs. 52.4 (11.2) (30.0–77.0) h/week; P < 0.001], and there was a non-significant trend for increased total sleep time per day [7.26 (0.36) vs. 6.75 (0.40) h; P = 0.095]. During a total of 4782 patient-days involving 481 admissions, 32.7% fewer total medical errors occurred during the intervention than during the traditional rota (27.6 vs. 41.0 per 1000 patient-days, P = 0.006), including 82.6% fewer intercepted potential adverse events (1.2 vs. 6.9 per 1000 patient-days, P = 0.002) and 31.4% fewer non-intercepted potential adverse events (16.6 vs. 24.2 per 1000 patient-days, P = 0.067). Doctors reported worse educational opportunities on the intervention rota. Conclusions: Whilst concerns remain regarding reduced educational opportunities, our study supports the hypothesis that a 48 h work week coupled with targeted efforts to improve sleep hygiene improves patient safety

    Amplitude Reduction and Phase Shifts of Melatonin, Cortisol and Other Circadian Rhythms after a Gradual Advance of Sleep and Light Exposure in Humans

    Get PDF
    Background: The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleepwake cycle has not been fully characterized. Methodology/Principal Findings: We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room ’ light (,90–150 lux) or moderate light supplemented with bright light (,10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54 % (17–94%) and after bright light by 52 % (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Analysis Method and Experimental Conditions Affect Computed Circadian Phase from Melatonin Data

    Get PDF
    Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used

    Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety

    Get PDF
    &lt;p&gt;Background: Melatonin is extensively used in the USA in a non-regulated manner for sleep disorders. Prolonged release melatonin (PRM) is licensed in Europe and other countries for the short term treatment of primary insomnia in patients aged 55 years and over. However, a clear definition of the target patient population and well-controlled studies of long-term efficacy and safety are lacking. It is known that melatonin production declines with age. Some young insomnia patients also may have low melatonin levels. The study investigated whether older age or low melatonin excretion is a better predictor of response to PRM, whether the efficacy observed in short-term studies is sustained during continued treatment and the long term safety of such treatment.&lt;/p&gt; &lt;p&gt;Methods: Adult outpatients (791, aged 18-80 years) with primary insomnia, were treated with placebo (2 weeks) and then randomized, double-blind to 3 weeks with PRM or placebo nightly. PRM patients continued whereas placebo completers were re-randomized 1:1 to PRM or placebo for 26 weeks with 2 weeks of single-blind placebo run-out. Main outcome measures were sleep latency derived from a sleep diary, Pittsburgh Sleep Quality Index (PSQI), Quality of Life (World Health Organzaton-5) Clinical Global Impression of Improvement (CGI-I) and adverse effects and vital signs recorded at each visit.&lt;/p&gt; &lt;p&gt;Results: On the primary efficacy variable, sleep latency, the effects of PRM (3 weeks) in patients with low endogenous melatonin (6-sulphatoxymelatonin [6-SMT] ≤8 μg/night) regardless of age did not differ from the placebo, whereas PRM significantly reduced sleep latency compared to the placebo in elderly patients regardless of melatonin levels (-19.1 versus -1.7 min; P = 0.002). The effects on sleep latency and additional sleep and daytime parameters that improved with PRM were maintained or enhanced over the 6-month period with no signs of tolerance. Most adverse events were mild in severity with no clinically relevant differences between PRM and placebo for any safety outcome.&lt;/p&gt; &lt;p&gt;Conclusions: The results demonstrate short- and long-term efficacy and safety of PRM in elderly insomnia patients. Low melatonin production regardless of age is not useful in predicting responses to melatonin therapy in insomnia. The age cut-off for response warrants further investigation.&lt;/p&gt

    Plasticity of the Intrinsic Period of the Human Circadian Timing System

    Get PDF
    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration

    Effects of thermoregulation on human sleep patterns: A mathematical model of sleep-wake cycles with REM-NREM subcircuit

    Get PDF
    In this paper we construct a mathematical model of human sleep/wake regulation with thermoregulation and temperature e ects. Simulations of this model show features previously presented in experimental data such as elongation of duration and number of REM bouts across the night as well as the appearance of awakenings due to deviations in body temperature from thermoneutrality. This model helps to demonstrate the importance of temperature in the sleep cycle. Further modi cations of the model to include more temperature e ects on other aspects of sleep regulation such as sleep and REM latency are discussedPostprint (author's final draft

    Circadian profiles in young people during the early stages of affective disorder

    Get PDF
    Although disturbances of the circadian system are strongly linked to affective disorders, no known studies have examined melatonin profiles in young people in early stages of illness. In this study, 44 patients with an affective disorder underwent clinical and neuropsychological assessments. They were then rated by a psychiatrist according to a clinical staging model and were categorized as having an ‘attenuated syndrome' or an ‘established disorder'. During the evening, salivary melatonin was sampled under dim light conditions over an 8-h interval and for each patient, the time of melatonin onset, total area under the curve and phase angle (difference between time of melatonin onset and time of habitual sleep onset) were computed. Results showed that there was no difference in the timing of melatonin onset across illness stages. However, area under the curve analyses showed that those patients with ‘established disorders' had markedly reduced levels of melatonin secretion, and shorter phase angles, relative to those with ‘attenuated syndromes'. These lower levels, in turn, were related to lower subjective sleepiness, and poorer performance on neuropsychological tests of verbal memory. Overall, these results suggest that for patients with established illness, dysfunction of the circadian system relates clearly to functional features and markers of underlying neurobiological change. Although the interpretation of these results would be greatly enhanced by control data, this work has important implications for the early delivery of chronobiological interventions in young people with affective disorders
    corecore